Martinez, R. \& Tiripicchio, A. (1990). Acta Cryst. C46, 202-205.
Paulus, E. F. \& Schäfer, L. (1978). J. Organomet. Chem. 144, 205213.

Pflugrath, J. W. \& Messerschmidt, A. (1992). MADNES. Munich Area Detector Systems. Delft Instruments, Delft, The Netherlands. Schomaker, V. \& Trueblood, K. N. (1968). Acta Cryst. B24, 63-76. Seiler, P. \& Dunitz, J. D. (1979a). Acta Cryst. B35, 1068-1074. Seiler, P. \& Dunitz, J. D. (1979b). Acta Cryst. B35, 2020-2032.
Seiler, P. \& Dunitz, J. D. (1982). Acta Cryst. B38, 1741-1745.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1996). SHELXTL. Structure Determination Programs. Version 5.05. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Takusagawa, F. \& Koetzle, T. F. (1979). Acta Cryst. B35, 1074-1079.
Webb, R. J., Lowery, M. D., Shiomi, Y., Sorai, M., Wittebort, R. J. \& Hendrickson, D. N. (1992). Inorg. Chem. 31, 5211-5219.
Yamin, B. M., Fun, H.-K., Sivakumar, K., Yip, B.-C. \& Shawkataly, O. B. (1996). Acta Cryst. C52, 600-602.

Acta Cryst. (1998). C54, 1578-1580

Aqua(4,4'-dicarbomethoxy-2,2'-bipyridineN, N^{\prime})(3,6-dichloro-4,5-dihydroxy-1,2-benzoquinonato- $\left.O^{4}, O^{5}\right)$ copper(II) Acetonitrile Hemisolvate \dagger

Li-Min Zheng, ${ }^{a}$ Helmut W. Schmalle, ${ }^{b}$ Sylvie Ferlay ${ }^{c}$ and Sllvio Decurtins ${ }^{c}$
${ }^{a}$ State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China,
${ }^{b}$ Institute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland, and ${ }^{\text {c Department für Chemie und Biochemie, Universität }}$ Bern, Freiestrasse 3, CH-3012 Bern 9, Switzerland. E-mail: schmalle@aci.unizh.ch
(Received 12 February 1998; accepted 5 May 1998)

Abstract

The title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{6} \mathrm{Cl}_{2} \mathrm{O}_{4}\right)\left(\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}\right)\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot 0.5 \mathrm{CH}_{3} \mathrm{CN}$, adopts a slightly distorted squarepyramidal geometry around the five-coordinated $\mathrm{Cu}^{\mathrm{II}}$ atoms, where the bidentate benzoquinone anion and the bidentate bipyridine ligand form the basal plane. The elongated apical position is occupied by a water molecule. The acetonitrile solvate molecule is disordered.

\section*{Comment}

Attempts to build new metallic molecular materials using the oxalate ligand leads to three- and two-

^[\dagger Systematic name: aqua(3,6-dichloro-4,5-dihydroxy-1,2-benzoquinon-ato- O^{4}, O^{5})(dimethyl $2,2^{\prime}$-bipyridine-4, 4^{\prime}-dicarboxylato- N, N^{\prime})copper(II) acetonitrile hemisolvate.]

dimensional compounds (Decurtins et al., 1994; Pellaux et al., 1997), while the 3,6-dichloro-4,5-dihydroxy-1,2-benzoquinone ligand (CA^{2-}) has the potential for building up one-dimensional or two-dimensional transition metal polymers. The structures of several such polymers have been determined. Among these are the one-dimensional structures of $\left[\mathrm{Cu}(\mathrm{CA})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$ (Cueto et al., 1992), $\left\{\left[\mathrm{Cu}(\mathrm{CA})\left(\mathrm{H}_{2} \mathrm{O}\right)_{m}\right](G)\right\}_{n}(m=2, G=$ 2,5-dimethylpyrazine and phenazine; $m=1, G=$ 1,2,3,4,6,7,8,9-octahydrophenazine; Kawata et al., 1996) and $\left[\mathrm{Cu}(\mathrm{CA})\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}\right]_{n}$ (Kawata et al., 1994), and the two-dimensional sheet structure of $[\mathrm{Cu}(\mathrm{CA})(\mathrm{pyz})]_{n}$ (pyz = pyrazine; Kawata et al., 1994). We have recently succeeded in synthesizing the two chain compounds $[\mathrm{Mn}(\mathrm{bipy})(\mathrm{CA})]_{n}$ (bipy $=2,2^{\prime}$-bipyridine; Zheng et al., 1996) and $[\mathrm{Cu}(\mathrm{DCMB})(\mathrm{CA})]_{n}$ ($\mathrm{DCMB}=3,3^{\prime}$-dicarbo-methoxy-2, 2^{\prime}-bipyridine) (Decurtins, Schmalle, Zheng \& Ensling, 1996). In our attempt to build new one- or two-dimensional bimetallic systems from an analogous precursor, $[\mathrm{Cu}(4-\mathrm{DCMB})]^{2+}\left(4-\mathrm{DCMB}=4,4^{\prime}\right.$-dicarbo-methoxy-2, 2^{\prime}-bipyridine), and a manganese(II) salt, a mononuclear compound, (I), was obtained.

The molecular structure of (I) is shown in Fig. 1. It exhibits a slightly distorted square-pyramidal coordination geometry about the $\mathrm{Cu}^{\mathrm{II}}$ atom. Two N atoms from the 4 -DCMB ligand $[\mathrm{Cu}-\mathrm{N}=1.984$ (2) and $\left.1.985(2) \AA, \mathrm{N} 1 A-\mathrm{Cu}-\mathrm{N} 1 B=81.7(1)^{\circ}\right]$ and two O atoms from the CA^{2-} ligand $[\mathrm{Cu}-\mathrm{O}=1.938$ (2) and $1.947(2) \AA, \mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 2=84.0(1)^{\circ}$] occupy the basal plane. All four atoms deviate by 0.007 (1) \AA from this plane. The Cu atom is pulled out of this least-squares plane $[0.218(1) \AA]$ towards the apically coordinated Oll atom $[\mathrm{Cu}-\mathrm{O} 11=2.216(2) \AA]$. The structure could be closely related to the mononuclear compound $\left[\mathrm{Cu}(\mathrm{DHBQ})(\right.$ bipym $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)\right] .5 \mathrm{H}_{2} \mathrm{O}$ (DHBQ is the dianion of 2,5 -dihydroxy-1,4-benzoquinone and bipym $=$ $2,2^{\prime}$-bipyrimidine; Decurtins, Schmalle, Schneuwly \& Zheng, 1996), where the bond lengths $\mathrm{Cu}-\mathrm{N}[1.983$ (3) and 2.004 (3) \AA] and $\mathrm{Cu}-\mathrm{O}$ [1.928 (3) and 1.947 (3) \AA] are comparable to those in the title compound, and the bond angles $\mathrm{N}-\mathrm{Cu}-\mathrm{N}\left[82.1(1)^{\circ}\right]$ and $\mathrm{O}-\mathrm{Cu}-$ O [85.1 (1) ${ }^{\circ}$] are only slightly larger. The two pyridine

Fig. I. ORTEPII (Johnson, 1976) drawing of the title complex. Displacement ellipsoids are drawn at the 40% probability level. H atoms are shown as small circles of arbitrary radii.
rings in 4-DCMB are approximately planar with an angle of $4.6(2)^{\circ}$ between them. The CA^{2-} ring is planar with a maximum deviation of 0.024 (2) Å for C3 and the four O atoms deviate by 0.002 (5)-0.052 (4) \AA from the plane. The neutral molecules are connected to each other through intermolecular hydrogen bonds. Details of the hydrogen bonds are listed in Table 2. The acetonitrile solvate molecule is disordered.

Experimental

4-DCMB was synthesized according to a published procedure (Sprintschnik et al., 1977). [$\left.\mathrm{Cu}(4-\mathrm{DCMB})_{2}\left(\mathrm{ClO}_{4}\right)_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ was first obtained by slow evaporation of a mixture of $\left[\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~m} M)$ and $4-\mathrm{DCMB}(1.5 \mathrm{~m} M)$ in 25 ml $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ (4:1). A solution of this complex ($5 \mathrm{~m} M$) and $\mathrm{MnCl}_{2} .4 \mathrm{H}_{2} \mathrm{O}\left(2.5 \mathrm{~m} M\right.$) in $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{CH}_{3} \mathrm{OH}$ (3:1) was placed on top of a sodium metasilica gel containing $5 \mathrm{~m} M \mathrm{H}_{2} \mathrm{CA}$. Dark-red plate-like crystals appeared after two weeks.

Crystal data

```
\(\left[\mathrm{Cu}\left(\mathrm{C}_{6} \mathrm{Cl}_{2} \mathrm{O}_{4}\right)\left(\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}\right)\right.\) -
    \(\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right] .0 .5 \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\)
\(M_{r}=581.30\)
Triclinic
\(P \overline{1}\)
```

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=5.9-10.4^{\circ}$
$a=9.331(4) \AA$
$b=10.67(3) \AA$
$c=12.884(3) \AA$
$\alpha=65.94(2)^{\circ} \AA^{\circ}$
$\beta=78.75()^{\circ}$
$\gamma=83.80(3)^{\circ}$
$V=1149.1(6) \AA^{3}$
$Z=2$
$D_{x}=1.680 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
$\mu=1.241 \mathrm{~mm}^{-1}$
$T=296$ (2) K
Plate
$0.35 \times 0.18 \times 0.05 \mathrm{~mm}$
Dark red

Data collection

Enraf-Nonius CAD-4 3578 reflections with
diffractometer
$\omega-2 \theta$ scan
Absorption correction:
numerical (Coppens et al., 1965)
$T_{\text {min }}=0.757, T_{\text {max }}=0.929$
6936 measured reflections 6661 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$w R\left(F^{2}\right)=0.145$

$S=1.074$

6661 reflections
326 parameters
H atoms treated by a mixture of independent
and constrained refinement
$(\Delta / \sigma)_{\max }=0.003$
$\Delta \rho_{\max }=0.486 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.579 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters ($\AA{ }^{\circ},^{\circ}$)

$\mathrm{Cu}-\mathrm{O} 1$	$1.938(2)$	$\mathrm{Cu}-\mathrm{N} 1 B$	$1.985(2)$
$\mathrm{Cu}-\mathrm{O} 2$	$1.947(2)$	$\mathrm{Cu}-\mathrm{O} 11$	$2.216(2)$
$\mathrm{Cu}-\mathrm{N} 1 A$	$1.984(2)$		
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 2$	$83.95(8)$	$\mathrm{N} 1 A-\mathrm{Cu}-\mathrm{N} 1 B$	$81.65(10)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{N} 1 A$	$167.47(10)$	$\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 11$	$97.36(9)$
$\mathrm{O} 2-\mathrm{Cu}-\mathrm{N} 1 A$	$96.18(9)$	$\mathrm{O} 2-\mathrm{Cu}-\mathrm{O} 11$	$99.16(9)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{N} 1 B$	$95.38(9)$	$\mathrm{N} 1 A-\mathrm{Cu}-\mathrm{O} 11$	$94.99(9)$
$\mathrm{O} 2-\mathrm{Cu}-\mathrm{N} 1 B$	$166.87(10)$	$\mathrm{N} 1 B-\mathrm{Cu}-\mathrm{O} 11$	$93.94(10)$

Table 2. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$

$D-\mathrm{H} \cdots \mathrm{A}$	D-H	H.. A	D... A	D-H. . A
O11-H111...O4 ${ }^{1}$	0.79 (1)	2.35 (2)	2.947 (3)	134 (1)
O11-H111...O5 ${ }^{\text {i }}$	0.79 (1)	2.27 (2)	2.999 (3)	153 (1)
O11-H112 ${ }^{\text {O }} 4^{\text {1i }}$	0.81 (1)	1.97 (2)	2.777 (3)	173 (2)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 A^{\cdots} \cdots \mathrm{N} 1 L^{\text {iii }}$	0.93	2.42	3.349 (10)	176.9
$\mathrm{C} 3 B-\mathrm{H} 3 B \cdots \mathrm{Nl} L^{\mathrm{m}}$	0.93	2.48	3.403 (11)	174.9
C5A-H5A...O42A ${ }^{16}$	0.93	2.51	3.210 (4)	132.6
C 6 B-H6B $\cdots \mathrm{Ol}$	0.93	2.58	3.082 (4)	114.5
$\mathrm{C} 6 \mathrm{~B}-\mathrm{H} 6 \mathrm{~B} \cdots \mathrm{Cl}{ }^{\text {v }}$	0.93	2.767	3.541 (4)	141.3
C51B-H51D...O11 ${ }^{\text {vi }}$	0.96	2.387	3.292 (5)	157.1

Symmetry codes: (i) $x-1, y, z ;$ (ii) $1-x,-y, 1-z ;$ (iii) $-x,-y, 1-z$; (iv) $-x,-1-y, 1-z:(\mathrm{v}) 1-x, 1-y,-z ;$ (vi) $-x, 1-y,-z$.

The three coordinating ligands were refined anisotropically and the positions of the H atoms were calculated and refined using a riding model. The water H atoms at Oll were located in a difference electron-density map and were refined with isotropic displacement parameters using $\mathrm{O}-\mathrm{H}$ and $\mathrm{H} \cdots \mathrm{H}$ distance restraints of 0.82 (2) and 1.30 (2) \AA, respectively. The acetonitrile solvent molecule was located by interpreting two electron-density peaks near a centre of symmetry with a very short inter-peak distance of about $1.10 \AA$. Application of the symmetry operation resulted in four atomic positions of which the central generated peak to peak distance was approximately $1.45 \AA$. Thus, the peak near the centre was assigned to a C atom and a rigid model of acetonitrile was refined with distance restraints $[\mathrm{N} 1 L-\mathrm{C} 1 L A=1.140(15)$ and $\mathrm{C} 1 L A-$ $\mathrm{C} 1 L B=1.453(15) \AA]$. The positions of the H atoms of the methyl $\mathrm{Cl} L B$ atom were calculated in a previous refinement with SHELXL97 (Sheldrick, 1997) using the HFIX 137 option and a dummy C atom. The H -atom coordinates were fixed in the final refinement cycles. All atoms of the acetonitrile solvent molecule were refined with a site occupancy factor of 0.5 and isotropic displacement parameters.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: MolEN (Fair, 1990). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL97. Molecular graphics: PLATON and PLUTON (Spek, 1990). Software used to prepare material for publication: SHELXL97.

We express gratitude to the Swiss National Science Foundation for financial support under project No. 2045750.95

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1187). Services for accessing these data are described at the back of the journal.

References

Coppens, P., Leiserowitz. L. \& Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.
Cueto, S.. Straumann, H.-P., Rys, P., Peter. W.. Gramlich. V. \& Rys, F. (1992). Acta Crust. C48, 458-460.

Decurtins, S., Schmaile, H. W., Schneuwly, P., Ensling. J. \& Gütlich, P. (1994). J. Am. Chem. Soc. 116, 9521-9528.

Decurtins, S., Schmalle. H. W.. Schneuwly, P. \& Zheng, L.-M. (1996). Acta Cn:st. C52, 561-566.
Decurtins, S., Schmalle, H. W., Zheng, L.-M. \& Ensling, J. (1996). Inorg. Chim. Acta. 244, 165-170.
Enraf-Nonius (1989). CAD-4 Softuare. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft. The Netherlands.
Johnson. C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kawata, S., Kitagawa. S.. Kondo, M.. Furuchi, I. \& Munakata, M. (1994). Angen: Chem. Int. Ed. Engl. 33, 1851-1854.

Kawata, S., Kitagawa, S.. Kumagai, H., Kudo, C., Kamesaki. H., Ishiyama, T., Suzuki, R., Kondo. M. \& Katada. M. (1996). Inorg. Chem. 35, 4449-4461.
Pellaux, R., Schmalle, H. W., Huber. R., Fischer. P.. Hauss, T., Ouladdiaf, B. \& Decurtins. S. (1997). Inorg. Chem. 36, 2301-2308.
Sheldrick. G. M. (1990). Acta Crist. A46. 467-473.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Spek. A. L. (1990). Acta Cryst. A46. C-34.
Sprintschnik, G., Sprintschnik, H. W... Kirsch. P. P. \& Whitten, D. G. (1977). J. Am. Chem. Soc. 99, 4947-4954.

Zheng, L.-M.. Schmalle, H. W., Huber. R. \& Decurtins, S. (1996). Polyhedron. 15, 4399-4405.

Acta Cryst. (1998). C54, 1580-1582

A New Dinuclear Molybdenum Compound, $\left(\mathrm{Bu}_{4} \mathrm{~N}\right)\left[\mathrm{Mo}_{2}(\mathrm{CO})_{6}(\mathbf{S P h})_{2}\left(\mathrm{CH}_{2} \mathrm{CCH}_{3} \mathbf{C O O}\right)\right]$

Guohua Pan, Botao Zhuang* and Jutong Chen
Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, State Key Laboratory of Structural Chemistry: Fu:hou, Fujian 350002, People's
Republic of China. E-mail: zbt@ms.fjirsm.ac.cn

(Received 7 January 1998: accepted 20 April 1998)

Abstract

The crystal structure of the title compound, tetrabutylammonium bis $(\mu$-benzenethiolato- $S: S)$ - μ-methacrylato$O: O^{\prime}$-bis(tricarbonylmolybdenum) $(\mathrm{Mo}-\mathrm{Mo}), \quad\left(\mathrm{C}_{16} \mathrm{H}_{36}{ }^{-}\right.$ $\mathrm{N})\left[\mathrm{Mo}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}_{2}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}\right)_{2}(\mathrm{CO})_{6}\right]$, shows that it contains a $\mathrm{Bu}_{4} \mathrm{~N}^{+}$cation and a dinuclear anion with three bridging ligands, i.e. $\left[\mathrm{Mo}_{2}(\mathrm{CO})_{6}(\mathrm{SPh})_{2}\left(\mathrm{CH}_{2} \mathrm{CCH}_{3} \mathrm{COO}\right)\right]^{-}$; the

